

Applied Finite Mathematics
Voting Methods Graded Assignment

Name: _____ Solutions _____

1. Give an example of an election with four candidates satisfying the following:

- a. No candidate has a majority of the first-place votes.
- b. One candidate is a Condorcet candidate but has no first-place votes.
- c. A different candidate is the winner under the Borda Count Method.
- d. Yet a different candidate is the winner under the Plurality Method.

Also show that your election satisfies these criteria.

Solution:

One example is as follows:

# of Voters	8	4	3	2
1 st choice	A	B	B	D
2 nd choice	C	D	C	C
3 rd choice	B	C	D	B
4 th choice	D	A	A	A

- a. A majority of the first-place votes would be a total of 9, which no player has.
- b. C beats every other candidate in a head-to-head contest, so C is a Condorcet candidate. However, C does not have any first-place votes.
- c. Under the Borda Count Method, we have the following point totals:

$$A: 4(8) + 3(0) + 2(0) + 1(9) = 41$$

$$B: 4(7) + 3(0) + 2(10) + 1(0) = 48$$

$$C: 4(0) + 3(13) + 2(4) + 1(0) = 47$$

$$D: 4(2) + 3(4) + 2(3) + 1(8) = 34$$

Hence, B wins under this method.

- d. Candidate A has 8 first-place votes, B has 7, C has 0, and D has 2. So, A wins under the Plurality method.

2. Consider the following fairness criterion: *If a majority of the voters have candidate X ranked last, then candidate X should not be a winner of the election.*

a. Give an example to show that the Plurality Method violates this criterion.

# of Voters	14	10	8	4	1
1 st choice	A	C	D	B	C
2 nd choice	B	B	C	D	D
3 rd choice	C	D	B	C	B
4 th choice	D	A	A	A	A

In this example, Candidate A has a majority of the last-place votes, but they win by the Plurality Method.

b. Give an example to show that the Plurality-with-Elimination Method violates this criterion.

# of Voters	2	2	3
1 st choice	A	B	C
2 nd choice	B	A	A
3 rd choice	C	C	B

In this example, Candidate C wins by Plurality-with-Elimination but has a majority of the last-place votes.

c. Explain why the Method of Pairwise Comparisons satisfies this criterion.

Under the Method of Pairwise Comparisons, if a candidate has a majority of the last-place votes, then they will never win a head-to-head comparison with any other candidate. Therefore, this method satisfies the criterion described.

d. Explain why the Borda Count Method satisfies this criterion.

Consider an election with N candidates where n voters place candidate X last, and m is the rest of the voters. We know, then, that $n > m$, since a majority of the voters place X last. So, the maximum number of points that candidate X can receive is $n + Nm$, because this would be the case where the m voters place candidate X first.

Each voter gives out $1 + 2 + \dots + N = \frac{N(N+1)}{2}$ points under this method, so the total number of points given out is $\frac{N(N+1)}{2}(n+m)$. Now, some candidate must earn $1/N^{\text{th}}$ of the total points; so, that

candidate must earn $\frac{\frac{N(N+1)}{2}(n+m)}{N} = \frac{(N+1)(n+m)}{2} = \frac{Nn+Nm+n+m}{2} = \frac{(n+Nm)+(m+Nn)}{2}$. Now, since $n > m$, we know that $\frac{(n+Nm)+(m+Nn)}{2} > \frac{(n+Nm)+(n+Nm)}{2} = \frac{2(n+Nm)}{2} = n + Nm$. Therefore, some candidate will earn more points than candidate X , causing candidate to lose the election.

3. Consider a variation of the Borda Count Method in which a first-place vote in an election with N candidates is worth F points, where $F > N$, and all other places in the ballot are the same as in the ordinary Borda Count: $N - 1$ points for 2nd place, $N - 2$ points for 3rd, etc. By choosing F large enough, we can make this variation of the Borda Count Method satisfy the majority criterion. Find the smallest value of F (expressed in terms of N) for which this happens, and prove why your value is, in fact, the smallest value such that this happens.

Solution:

Suppose there are k voters and N candidates. We will consider two cases: when k is even and when it is odd.

k is odd: Let $k = 2x + 1$, where $x > 0$. Suppose candidate X is a candidate with a majority of the first-place votes. The minimum Borda points this candidate can have is $F(x + 1) + x$, since this would be the case where candidate X receives F first-place votes and every other voter places them last. The maximum Borda points any other candidate can earn is $(N - 1)(x + 1) + Fx$, since this would be the case where x voters place X first and the rest $(x + 1)$ of the voters place them second. So, the Majority Criterion will be satisfied when $F(x + 1) + x > (N - 1)(x + 1) + Fx$. This means that $F > N(x + 1) - (2x + 1) = N(k - x) - k$.

k is even: Let $k = 2x$, where $x > 0$. Suppose candidate X is a candidate with a majority of the first-place votes. The minimum Borda points this candidate can have is $F(x + 1) + x - 1$, since this would be the case where candidate X receives F first-place votes and every other voter places them last. The maximum Borda points any other candidate can earn is $(N - 1)(x + 1) + F(x - 1)$, since this would be the case where x voters place X first and the rest of the voters place them second. So, the Majority Criterion will be satisfied when $F(x + 1) + (x - 1) > (N - 1)(x + 1) + F(x - 1)$. This means that $F > \frac{N(x+1)-2x}{2} = \frac{N(x+1)-k}{2}$.